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discerned, some important fundamental features of 
bonding and structure will be apparent. Structural 
quadrics should be a useful concept for future work in 
crystallography. 
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Abstract 

An expression for the variance of a deviation of an 
atom from the best plane of the group to which the 
atom belongs has been derived and a practical 
procedure for obtaining the variance, while neglecting 
correlations between different atoms, is suggested. 

One of the results of a structural study, particularly 
relevant for unsaturated or aromatic organic com- 
pounds, is the degree of planarity of a group of atoms. 
The deviations of the atoms from the best plane of the 
group are often interpreted in terms of interatomic 
and/or intermolecular forces, and in order to put such 
interpretations on a sound basis, it is often of interest to 
find out how significant these deviations really are. 
Since the statistics of deviation of atoms from the best 
plane, and their implementation in practical calcu- 
lations, have not been, to the author's knowledge, 
discussed in the crystallographic literature, it was 
thought desirable to deal with this subject as described 
in what follows. This can, of course, be presented in a 
general and rigorous manner, e.g. by discussing the 
transformation of the variance-covariance matrix to 
the coordinate system of interest (Cram+r, 1951). It 
seems, however, that the evaluation of the variance of 
an atomic position along a given direction is more 
appropriate to the level of approximation usually 
adopted in crystallographic studies. 
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The usual statistical treatments of the linear trans- 
formation of a vector of random variables, and its 
variance-covariance matrix, assume that all the quan- 
tities are referred to a Cartesian system (e.g. Linnik, 
1961). This is not suitable for our purpose, since the 
transformations involved include, at least in part, a 
transition from the triclinic to a Cartesian system and 
vice versa, but can be readily modified as shown below. 

We assume here that the frequency distribution of 
the position of an atom (the outcome of a least-squares 
refinement) obeys the trivariate normal law (e.g. 
Cruickshank, 1967), with the true position as the mean. 

Let 

~r=(~1~2~3), x r = ( x  ix  2x 3) (1) 

be the possible (random) and mean atomic position 
vectors, expressed in contravariant components (Pat- 
terson, 1967). Then the expectation value 

B = E [ ( ~ -  x ) ( ~ -  x)rl (2) 

is the variance-covariance matrix of such a position 
vector. In practice, B iJ is given by 2 ij tr(x t) a(xj), where 
2 iJ are the correlation coefficients and a the estimated 
standard deviation. 

Let now 

~r = (k 1 k2k3 ) (3) 

be a constant unit vector, expressed in covariant 
components (in our case referred to the reciprocal- 
lattice basis vectors). The scalar Woduct kr(~ - x) is 
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also a random variable, with zero mean and with 
variance 

o~=  E[kr(~ - x)(~j-- x) r I~] = ErBE 

"I'0, = e(Zlo, z<0,) 

3 3 

= ~. Y. k ~ k j B  tj. (4) 
/ = l J = l  

Hence, the standard deviation of an atomic position, 
taken in any direction E, is given by the square root of 
the quadratic form (4). 

Turning to the deviations from the best plane, we 
define ztn ) = ~(n) - X(n) and z~0 ) = ~(o) -- X(o) as the 
vectors of statistical deviations of the nth atom and of 
the centroid of the group, respectively, from their 
average positions. We further take E as a unit vector, 
normal to the best plane. The mean deviation of the nth 
atom from the best plane is then given by 

A-~ = E[Er(Zcn)- z¢0))] = l~r(x¢o)- X~n )) (5) 

(Rollett, 1965) and the variance of this deviation is 

o2(A,) = D2[Er(z(,)-  z¢0))] 

= E [ E ~ ( z ~ . ) -  Z~o))(z~.)- Z~o~) ~ El 

= E B~.) E + E ~ B~o) E - E~[E (z~.> Z~o)) 

+ E (z~0) z~.))] E, (6) 

where Bc. ~ = E(z~.)z~,o) and B~0 ~ = E(zt0 ~ z~0)) are the 
variance-covarlance matrices of atom n and the 
centroid of the group respectively. The first two 
quadratic forms in the last line of (6) are, by analogy 
with (4), the variances of atom n and the centroid, 
along the plane normal k, while the last two quadratic 
forms in (6) depend primarily on correlations between 
positional uncertainties of different atoms. Interatomic 
correlations and hence the corresponding contri- 
butions to the variance of A, will be neglected in this 
paper. 

It remains to relate the variance-covariance matrix 
of the centroid to the (usually available) atomic 
positional uncertainties. The deviation of the centroid 
from its mean position can be written as 

N 

z~0) = ~ 0 ~ -  x(0~ = ~ - / 9 ( ~ ( ~ -  x(/gj) (7) 
/9=1 

W N where ap = ~9~Y o= 1 wq, Wq are the weights assigned to 
the atoms in the best-plane calculation (Rollett, 1965) 
and N is the number of atoms in the group which is 
tested for planarity. The contravariant components of 
Bt0 ~ are given by 

P q 

~ u  ,, ( 8 )  =- Z Z apaqlJ(pq~ 
p q 

and since the interatomic correlations are neglected, (8) 
reduces to 

The following practical procedure follows from the 
above considerations, assuming that the atomic frac- 
tional coordinates and the (3 x 3) atomic positional 
variance-covariance matrices, referred to the crystal 
system, are available. 

1. Carry out the best-plane calculation and refer the 
plane normal (unit vector) 1~ to the reciprocal-lattice 
basis a*, b*, e* (see also Appendix, where a possible 
way of doing this is indicated). 

2. Calculate the components of the centroid 
variance-covariance matrix from (9) and evaluate a~o)~ 
= E ~ B~0 ) E. 

3. Calculate the standard deviations of the 
deviations from the best plane as 

o(d,) = [E B~,) E + a~0)~l 1/2, (10) 

with the atomic variance-covariance matrices Bt,), and 
find the ratios A,,/a(A,,)  for assessing the statistical 
significance of the deviations from the best plane. 

The method described above is still somewhat 
approximate, mainly because of the neglect of inter- 
atomic correlations and to a small extent due to an 
implicit error-free direction of the plane normal. A 
comparison of (8) and (9) indicates that the neglect of 
interatomic correlations may affect the variance of the 
centroid to a possibly large extent but even if all the 
correlations are allowed for, this variance can never 
exceed corresponding average variance of an atomic 
position, and will usually be appreciably smaller than 
the latter. It appears that the contribution of Bt0 ) may 
be important when the number of the atoms involved is 
small. The procedure suggested in this paper has been 
programmed and is being used in this laboratory (e.g. 
Shaanan & Shmueli, 1980). 

It should also be mentioned that a least-squares 
estimate of the standard deviation of the centroid can 
be obtained directly as a by-product of a constrained 
refinement calculation which is referred to the inertial 
system of the group considered (cf. Shmueli & 
Goldberg, 1974) and in which the position of the 
centroid is being refined. 
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APPENDIX 

The best-plane calculation is conveniently referred to a 
Cartesian system with origin at the centroid of the 
group of atoms involved, and with axes directed along 
the eigenvectors of a matrix which has the same 
functional form as that of the tensor of inertia (e.g. 
Rollett, 1965). Denoting the unit vectors of this 
Cartesian system by 01, ¢¢2, ~'3 and the crystal and 
reciprocal-lattice basis vectors by a 1, a2, a 3 and a*, a*, 
a~' respectively, we can express an atomic position 
vector as 

In any such calculation we evaluate or have access 
to the following transformation relating the crystal and 
the best-plane systems 

X~= Z Rktxf  c. (A4) 
l 

Comparing (A2) and (A3) with (A4) it is seen that the 
rows of the matrix R contain the components of the 
vectors @k, k = 1, 2, 3, referred to the reciprocal vectors 
a*, a* and a~'. One of the ~ vectors corresponds to the 
plane normal, and its representation, required for 
evaluating the perpendicular variances, discussed in the 
text, is thus a by-product of a conventional best-plane 
calculation• 

r = Y X~  ¢1k = Z X~ c at, ( a  1) 
k i 

where X~,, k = 1, 2, 3, are Cartesian coordinates, 
referred to the best-plane system and x~ c, l = 1, 2, 3, are 
fractional coordinates, referred to the centroid of the 
group as origin and to the crystal system. 

We further have the scalar products 

and 

r. ~p = E X~  ~k. vp = Y X~ akv = X I (A2) 
k k 

• = = cc (A3) r a* Zx~ ~a,'ap*=Zxf ~filp xp 
l 1 

since v k are orthonormal and a I and a* are mutually 
reciprocal sets of basis vectors. 
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Abstract 

Structural studies of the crystalline monoclinic C phase 
of the potassium soap K+.C10H1902 (space group 
P21/a, a = 8.145 + 0.044, b = 5.726 + 0.010, c = 

*Present address: Cavendish Laboratory, Madingley Road, 
Cambridge, CB3 0HE, England. 

28.309 + 0.061 A, fl = 94 ° 35' + 46', Z = 4) stable 
above 349 K are reported. Analysis of the Bragg 
diffraction data demonstrates that the heavy end group 
and the first four carbon atoms in the hydrocarbon 
chain, C(1) to C(4), retain the ordered configuration of 
the room-temperature A phase. The remainder of the 
chain, C(5) to C(10), is disordered• The disordered 
segments of chain adopt an average parallel packing on 
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